If it's not what You are looking for type in the equation solver your own equation and let us solve it.
2k^2-360=0
a = 2; b = 0; c = -360;
Δ = b2-4ac
Δ = 02-4·2·(-360)
Δ = 2880
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$k_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$k_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{2880}=\sqrt{576*5}=\sqrt{576}*\sqrt{5}=24\sqrt{5}$$k_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-24\sqrt{5}}{2*2}=\frac{0-24\sqrt{5}}{4} =-\frac{24\sqrt{5}}{4} =-6\sqrt{5} $$k_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+24\sqrt{5}}{2*2}=\frac{0+24\sqrt{5}}{4} =\frac{24\sqrt{5}}{4} =6\sqrt{5} $
| 10b+8b+9−18b+3=5+6b−2b−12+7 | | 2x+41(x+37)=180 | | 5y+6=2+3y | | 6^(-3n)=36 | | (2/(3x))+(5/(2x))=(7/x) | | 2x+35=30x-15 | | 8+3y=6y-22 | | x+37(2x+41)=180 | | (7x-23)=140 | | 3x/5x-2=6/8 | | 38-7y=8-2y | | 5y-9=27 | | m/726=3 | | 6x4=9 | | 5^2x+1=3^4x-3 | | m/3=726 | | 2x2-16x-168=0 | | 7/6x+7/12=5/18 | | -363p=6-15 | | 4z-9=11-z | | r/5-11=-10 | | 88=4y+22 | | 8(4–x)=16 | | 1/4x+1/4(-4x+20)=-1 | | k2+7k−18=0 | | 5x+35=3x+51 | | m2-2m-6=0 | | Y-5=8/3(x-3) | | u/3+15=28 | | f(9)=5(9)-2 | | 2x+12.3=35.3 | | –20+6n=–19+6n+3 |